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Heat transport by turbulent Rayleigh–Bénard
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ratio one and less
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We present high-precision measurements of the Nusselt number N as a function of
the Rayleigh number R for cylindrical samples of water (Prandtl number σ = 4.4)
with a diameter D of 49.7 cm and heights L = 116.3, 74.6, and 50.6 cm, as well as for
D = 24.8 cm and L = 90.2 cm. For each aspect ratio Γ ≡ D/L = 0.28, 0.43, 0.67, and
0.98 the data cover a range of a little over a decade of R. The maximum R � 1012

and Nusselt number N � 600 were reached for Γ =0.43 and D = 49.7. The data were
corrected for the influence of the finite conductivity of the top and bottom plates
on the heat transport in the fluid to obtain estimates of N∞ for plates with infinite
conductivity. The results for N∞ and Γ � 0.43 are nearly independent of Γ . For
Γ = 0.275 N∞ falls about 2.5% below the other data. For R � 1011, the effective
exponent γeff of N∞ = N0R

γeff is about 0.32, larger than those of the Grossmann–
Lohse model with its current parameters by about 0.01. For the largest Rayleigh
numbers covered for Γ = 0.98, 0.67, and 0.43, γeff saturates at the asymptotic value
γ = 1/3 of the Grossmann–Lohse model. The data do not reveal any crossover to a
Kraichnan regime with γeff > 1/3.

1. Introduction
Understanding turbulent Rayleigh–Bénard convection (RBC) in a fluid heated from

below (e.g. Siggia 1994; Kadanoff 2001; Ahlers, Grossmann & Lohse 2002) is one
of the challenging and largely unsolved problems in nonlinear physics. An important
aspect is the global heat transport that is usually expressed in terms of the Nusselt
number

N = QL/λ�T. (1.1)

Here Q is the heat-current density, L the sample height, �T the applied temperature
difference, and λ the thermal conductivity of the fluid in the absence of convection.
A central prediction of various theoretical models (Kraichnan 1962; Siggia 1994;
Grossmann & Lohse 2000, 2001, 2002, 2004) is a relationship between N, the Rayleigh
number R = αg�T L3/κν (α is the isobaric thermal expension coefficient, κ the thermal
diffusivity, ν the kinematic viscosity, and g the acceleration of gravity), and the Prandtl
number σ = ν/κ . A model developed recently by Grossmann & Lohse (2000), based
on the decomposition of the kinetic and the thermal dissipation into boundary-
layer and bulk contributions, provided an excellent fit to experimental data of
Xu, Bajaj & Ahlers (2000) and Ahlers & Xu (2001) for a cylindrical cell of aspect
ratio Γ ≡ D/L = 1 (D is the sample diameter) when it was properly adapted
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(Grossmann & Lohse 2001, referred to hereafter as GL) to the relatively small
Reynolds numbers of the measurements. However, the data were used to determine
five adjustable parameters of the model. Thus more stringent tests using measurements
for the same Γ but over wider ranges of R and σ are desirable. A great success of the
model was the excellent agreement with recent results by Xia, Lam & Zhou (2002)
for much larger Prandtl numbers than those of Ahlers & Xu (2001), at Rayleigh
numbers near 1.78 × 107 and 1.78 × 109.

Here we present new measurements in a cell of diameter D =49.7 cm for σ � 4.4
that, for Γ = 0.98, extend to R � 1011. We also report results for D = 49.7 cm and
Γ =0.427 and 0.667, as well as for D =24.8 cm and Γ = 0.275. For Γ � 0.5 it is
expected that the large-scale flow (LSF) in the cell (Krishnamurty & Howard 1981)
consists of a single convection roll (Verzicco & Camussi 2003). For Γ � 0.5, on the
other hand, Verzicco & Camussi (2003) suggest that the system contains two or
more rolls placed vertically one above the other. How this affects the heat transport
was one of the questions to be addressed here. Work by Roche et al. (2004) had
suggested a reduced heat transport for the two-roll structure. Based on this result, our
measurements suggest that even the cell with Γ = 0.43 still contained only one roll
because the data for N fall on the smooth line drawn through those for the larger
Γ . The Γ = 0.28 results fall about 2.5% below all the other data, suggesting a more
complicated, perhaps two-roll, structure for the LSF.

Most of our measurements were made at a mean temperature of 40 ◦C, where σ =
4.38, κ =6.7 cm2 s−1, α =0.000388 K−1, λ= 0.0063 Wcm−1 K. However, for Γ = 0.67
we also made measurements at mean temperatures of 50 ◦C and 30 ◦C, corresponding
to σ = 3.62 and 5.42 respectively. We found a very gentle decrease of N with increasing
σ , approximately in proportion to σ −0.044. All of our measurements are expected to
conform closely to the Boussinesq approximation. For the largest �T � 20 ◦C we
have α�T = 0.008 and the ratio of the temperature drop across the top and bottom
boundary layer is estimated to be xWL = 1.15.

One of the experimental problems in the measurement of N(R) is that the sidewall
often carries a significant part of the heat current. Corrections for this effect are
not easily made, because of the thermal contact between the wall and the fluid that
yields a two-dimensional temperature field in the wall, and because of the influence
of lateral heat currrents through the wall on the fluid flow (Ahlers 2000; Roche et al.
2001; Verzicco 2002; Niemela & Sreenivasan 2003). The present project was designed
to provide data that are not uncertain because of a significant sidewall correction. We
used a classical fluid of relatively large conductivity confined by sidewalls of relatively
low conductivity. The system of choice was water confined by Plexiglas with various
heights L, and with the greatest diameter permitted by other constraints. We built four
convection cells, three with D = 49.67 cm with heights L = 116.33, 74.42, and 50.61 cm,
and one with D = 24.81 cm and L =90.18 cm. For the Γ = 0.98 (L = 50.61) cell, which
is most relevant to comparison with the theoretical model of GL, we estimated a wall
correction (using Model 2 of Ahlers 2000) of only 0.3% for R =5 × 109 (N � 100) and
smaller corrections for larger R. Based on this estimate we felt justified in neglecting
the correction.

A second experimental problem was pointed out recently by Chaumat, Castaing
& Chillá (2002) and Verzicco (2004). Using direct numerical simulation, Verzicco
(2004) showed that end plates of finite conductivity diminish the heat transport in
the fluid when the Nusselt number becomes large. In a separate paper we shall give
details of the apparatus used in our work (Brown et al. 2005). There we will describe
measurements using two types of top and bottom plates of identical shape and size,
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No. T̄ (◦C) �T (◦C) 10−8R N N∞ No. T̄ (◦C) �T (◦C) 10−8R N N∞

1 39.932 2.122 576.8 229.1 229.5 2 39.964 4.036 1098.4 281.4 282.3
3 40.001 5.935 1617.2 317.2 318.6 4 40.044 7.817 2133.1 346.6 348.6
5 40.090 9.689 2648.5 371.1 373.6 6 40.141 11.553 3163.5 392.4 395.4
7 40.191 13.405 3677.1 411.4 415.0 8 39.997 2.983 812.7 255.1 255.7
9 40.032 4.888 1333.4 298.5 299.7 10 40.015 3.934 1072.6 278.6 279.4

11 40.012 2.261 616.4 233.7 234.1 12 39.990 6.448 1756.4 325.5 327.1
13 39.994 13.406 3652.1 410.0 413.6 14 39.973 8.941 2433.8 361.2 363.4
15 40.020 10.809 2947.2 383.3 386.1 16 39.998 11.833 3224.0 393.7 396.8
17 40.017 15.710 4283.1 430.5 434.7 18 40.007 13.773 3753.6 413.2 416.9
19 40.031 17.636 4810.5 446.6 451.3 20 40.002 19.647 5353.6 462.0 467.3
21 39.997 9.872 2689.6 372.2 374.7 22 39.997 7.908 2154.5 347.4 349.3

Table 1. Results for Γ = 0.275 and D = 24.81 cm. In this and all following data tables two
points are listed in each row, and the points are numbered in chronological sequence.

No. T̄ (◦C) �T (◦C) 10−8R N N∞ No. T̄ (◦C) �T (◦C) 10−8R N N∞

1 39.849 19.921 11603.4 595.4 624.7 2 39.976 17.705 10358.7 574.5 601.6
3 40.021 15.661 9177.2 553.1 577.9 4 40.028 13.693 8025.7 529.2 551.7
5 39.993 11.811 6914.1 505.3 525.4 6 39.996 9.843 5763.1 476.9 494.6
7 40.092 7.689 4517.2 441.1 455.8 8 40.008 3.936 2305.5 356.1 364.8
9 40.009 1.965 1151.2 286.0 291.0 10 40.053 2.862 1679.0 322.4 329.2

11 40.057 4.824 2830.3 380.6 390.8 12 39.979 5.958 3486.2 405.8 417.8
13 40.014 1.464 857.9 260.2 264.1

Table 2. Results for Γ = 0.427 and D = 49.7 cm.

but with one set made of copper with a conductivity λCu =391 Wm−1 K and the other
of aluminium with λAl = 161 Wm−1 K. That work yielded a correction factor that has
been applied to the data reported here.

2. Results
2.1. The measurements

Details of the apparatus and of experimental procedures are given by Brown et al.
(2005). The precision of the measurements is typically near 0.1%, and systematic
errors, primarily due to uncertainties of the diameter and length of the cell, are
estimated to be near 1%. Deviations from the Boussinesq approximation are believed
to be unimportant (Brown et al. 2005). Measurements of the heat current with fixed
top and bottom temperatures for time intervals of up to three days revealed no long
transients; the system had always reached a stationary state after about two hours.
We give the results in tables 1 to 4. The measured N derived from (1.1) as well as
the Nusselt number N∞ obtained after correction for the finite top- and bottom-
plate conductivity (Verzicco 2004) are listed. The relation between these is given by
N = f (X)N∞ where X is the ratio of the average thermal resistance of the plates
to that of the fluid. We used the empirical function f (X) = 1 − exp[−(aX)b], with
the parameters a = 0.275 and b =0.390 for D = 49.7, and a = 0.304 and b =0.506
for D = 24.82, determined experimentally (Brown et al. 2005). The parameters were
found to be independent of the aspect ratio but to depend on the plate diameter.
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No. T̄ (◦C) �T (◦C) 10−8R N N∞ No. T̄ (◦C) �T (◦C) 10−8R N N∞

1 39.922 17.639 2693.9 371.5 389.3 2 39.816 16.035 2439.8 359.5 376.0
3 39.923 13.881 2120.1 343.9 358.8 4 39.937 11.892 1817.2 327.7 341.0
5 39.984 7.891 1207.7 288.0 297.9 6 39.995 3.955 605.5 231.5 237.3
7 40.013 1.952 299.1 185.8 189.1 8 39.979 19.633 3004.5 384.2 403.4
9 39.964 20.637 3156.4 389.9 409.7 10 39.898 18.821 2872.0 378.4 396.9

11 39.984 16.693 2555.0 365.1 382.2 12 39.915 14.875 2271.3 351.4 367.1
13 39.890 12.974 1979.2 336.5 350.6 14 40.109 10.574 1625.6 316.0 328.3
15 39.974 8.900 1361.7 299.4 310.2 16 40.059 2.846 436.8 209.0 213.5
17 39.974 17.693 2707.1 371.7 389.5 18 49.989 19.566 4101.7 426.0 450.1
19 49.886 18.789 3927.2 420.2 443.6 20 49.969 17.651 3698.0 412.3 434.8
21 49.959 5.003 1047.9 277.7 286.8 22 50.087 6.710 1410.6 304.8 316.0
23 50.136 8.576 1805.4 329.9 343.4 24 50.146 10.503 2211.6 351.2 366.8
25 50.174 12.406 2614.4 370.4 388.1 26 50.097 14.525 3054.1 388.4 408.1
27 49.902 4.140 865.7 261.6 269.4 28 49.935 3.092 647.1 239.0 245.3
29 49.928 2.120 443.6 212.4 217.0 30 49.973 1.046 219.1 172.3 175.0
31 39.974 17.693 2707.1 371.7 389.5 32 29.980 19.647 2007.0 336.1 350.3
33 29.996 17.656 1805.0 325.1 338.2 34 29.841 16.006 1624.5 314.4 326.6
35 29.742 14.246 1439.0 302.2 313.2 36 29.913 11.963 1218.2 287.0 296.8
37 29.957 9.918 1012.1 270.5 278.9 38 29.932 8.011 816.6 252.8 260.0
39 29.859 6.190 628.8 232.5 238.3 40 29.897 4.157 423.0 205.0 209.2
41 29.904 2.171 221.0 167.0 169.5 42 30.036 2.898 296.8 183.6 186.8
43 30.011 4.913 502.6 216.6 221.5 44 30.018 6.858 701.8 240.6 246.9
45 29.992 2.491 254.6 174.3 177.1

Table 3. Results for Γ = 0.667 and D =49.7 cm.

No. T̄ (◦C) �T (◦C) 10−8R N N∞ No. T̄ (◦C) �T (◦C) 10−8R N N∞

1 40.092 1.792 86.7 125.3 127.5 2 40.006 2.940 141.7 145.6 148.9
3 40.015 3.898 188.0 158.8 162.9 4 39.975 4.951 238.4 170.9 175.7
5 39.953 5.969 287.2 181.2 186.8 6 39.933 6.979 335.6 190.2 196.4
7 39.933 7.952 382.3 197.9 204.8 8 39.966 9.832 473.3 211.4 219.4
9 39.935 11.829 568.8 224.2 233.4 10 39.916 13.803 663.3 235.1 245.4

11 40.039 15.500 748.1 244.3 255.5 12 39.407 16.728 789.6 248.3 259.9
13 39.933 17.645 848.4 254.1 266.3 14 40.038 2.386 115.1 136.2 138.9
15 39.996 1.489 71.8 118.0 119.9 16 39.935 17.638 848.2 254.0 266.3
17 39.943 17.633 848.2 254.2 266.4

Table 4. Results for Γ = 0.981 and D = 49.7 cm.

2.2. Dependence on R and Γ

The results for N∞ are shown on logarithmic scales in figure 1(a) and with greater
resolution in the compensated form N∞/R1/3 in figure 1(b). We note that over most
of the range of R the data for Γ � 0.43 reveal very little if any dependence of
N∞ on Γ . Recent considerations by Grossmann & Lohse (2003) had suggested a
stronger Γ -dependence. Earlier experimental data (Wu & Libchaber 1992; Xu et al.
2000) also suggested a stronger Γ dependence; but those results were influenced by
sidewall and/or end-plate effects. Note for instance that the sidewall correction made
by Ahlers (2000) considerably reduced the Γ dependence originally seen by Xu et al.
2000). Similarly, our present results for N reveal some dependence on Γ , but the
end-plate correction largely removes it. It is particularly noteworthy that the data
for Γ = 0.43 are not shifted significantly relative to those for Γ = 0.67 because on
the basis of the numerical calculations of Verzicco & Camussi (2003) one expects
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Figure 1. (a) The Nusselt number N∞ as a function of the Rayeigh number R on logarithmic
scales. (b) The compensated Nusselt number N∞/R1/3 as a function of the Rayleigh number
R. Open squares: Γ =0.275. Solid circles: Γ = 0.43. Open circles: Γ =0.67. Solid squares:
Γ = 0.98. Solid lines: the prediction of Grossmann & Lohse (2001) for σ = 4.4.
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Figure 2. The compensated Nusselt numbers N∞/R1/3 as a function of the Rayleigh
number R for Γ = 0.98 (solid squares), Γ = 0.67 (open circles), and Γ = 0.43 (solid circles)
as in figure 1(b) but on an expanded scale. Lines: power laws N∞ = N0R

γeff . Solid line:
N0 = 0.0797, γeff = 0.3222. Dashed lines: γeff = 1/3 and (from top to bottom) N0 = 0.06063,
0.06019, 0.05945.

different structures for the LSF for these two cases. The data for Γ = 0.275 are lower
by about 2.5%, suggesting that a transition in the LSF structure may occur between
Γ = 0.43 and 0.275.

A second important feature of the data is their dependence on R. Locally, over a
limited range, the measurements can be fitted by the power law

N∞ = N0R
γeff . (2.1)

For the effective exponent we found γeff =0.323 for Γ = 1 near R = 2 × 1010 and
γeff = 0.329 for Γ = 0.67 near R = 1011. As shown in figure 2, a single fit to most of
the data for Γ = 0.98, 0.67, and 0.43 yields γeff = 0.322. All these values are close to,
but definitely less than, the asymptotic large-R prediction γ = 1/3 of the GL model.
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However, they are larger by about 0.01 or 0.015 than the GL prediction for Γ = 1
at the same R. This can also be seen qualitatively from figure 1(b) where the GL
prediction with its present parameter values is shown as a solid line. It remains to be
seen whether the model parameters can be adjusted so as to reproduce this feature
also.

Another interesting aspect noticeable in figure 1(b) is that for Γ = 0.98, 0.67, and
0.43 there is an apparent sudden change in the R-dependence of N∞ at large R

to a power law with γ = 1/3, i.e. with the asymptotic prediction of the GL model.
This is illustrated more clearly in figure 2 which shows the relevant data with higher
resolution. A change to a 1/3 power law was also reported by Niemela & Sreenivasan
(2003) for Γ = 1 and σ � 0.8, albeit at somewhat larger values of R, near R � 1013. It
is difficult to see how the GL model can reproduce the rather sudden transition at
finite R to its asymptotic exponent value. Rather, it seems likely that a new physical
phenomenon not yet contained in the model will have to be invoked. The transition
occurs for Γ = 0.98, 0.67, and 0.43 near R = 5×1010, 9×1010, and 3×1011 respectively
and is reflected in the observation that the data for larger R fall on horizontal lines
in the figures. In this range the measurements suggest a weak dependence on Γ , with
N0(γeff = 1/3) = 0.0606, 0.0602, and 0.0595 for Γ = 0.98, 0.67, and 0.43 respectively.
One interpretation of these results for N0 is that the heat transport is diminished,
albeit only very slightly, by a larger travel distance, and presumably a larger period,
of the LSF. At smaller R an effective power law with N0 = 0.0797, γeff =0.322 (solid
line in figure 2) fits the data at all three Γ values within their statistical uncertainty,
showing that the results are essentially Γ independent. It is a surprise that the data
for Γ =0.67 and 0.43 do not differ more from each other because different structures
for the LSF had been predicted for these two cases (Verzicco & Camussi 2003). The
Γ =0.275 results do indeed have a Nusselt number that is smaller by about 2% to
3%, suggesting that the transition in the flow structure occurred between Γ = 0.43
and 0.275. Those results do not show the saturation at large R with γeff = 1/3, and
lead to γeff = 0.321 over their entire range.

2.3. Dependence on the Prandtl number σ

The Nusselt number N∞(σ ) has a broad maximum near σ � 4. Thus the dependence
of N on σ is very weak and difficult to determine from measurements with various
fluids of different σ because of systematic errors due the uncertainties of the fluid
properties (Ahlers & Xu 2001; Xia et al. 2002). We determined N(σ, R) with high
precision over a narrow range of σ by using the same convection cell and by changing
the mean temperature. In that case errors from different cell geometries are largely
absent and the properties are known very well. Similar measurements over the ranges
5 × 106 � R � 5 × 108 and 4 � σ � 6.5 were made by Liu & Ecke (1997). Their
results can be represented well by

N = N00σ
αeffR

γeff (2.2)

with γeff = 0.286, αeff = −0.030, and N00 = 0.1780. The negative value of αeff indicates
that the maximum of N(σ ) is below σ � 4.

We used our Γ = 0.67 cell and made measurements at 30 ◦C, 40 ◦C, and 50 ◦C
corresponding to σ = 5.42, 4.38, and 3.62 respectively. The results are included in
table 3, and in the compensated form N∞/R1/3 they are shown as a function of R in
figure 3(a). Over the range 2×1010 � R � 4×1011 they yield αeff � −0.044, indicating
that for this range of R also the maximum of N(σ ) occurs below σ = 4. The reduced
Nusselt number N∞σ 0.044/R1/3 is shown in figure 3(b). It shows that the data, within
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Figure 3. (a) The compensated Nusselt numbers N∞/R1/3 as a function of the Rayleigh
number R for Γ =0.667 at three values of the Prandtl number. (b) The reduced Nusselt
numbers N∞σ 0.044/R1/3 as a function of R. Up-pointing triangles: 50 ◦C and σ =3.62. Open
circles: 40 ◦C and σ =4.38. Down-pointing triangles: 30 ◦C and σ = 5.42.
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Figure 4. The reduced Nusselt numbers N∞σ 0.044/R1/3 as a function of R. (a) Stars: Data
of Roche et al. (2004) for 2.5 � σ � 6.0 and Γ =0.50. Other symbols: this work for σ = 4.4
and Γ = 0.98 (solid squares), 0.67 (open circles), 0.43 (solid circles), and 0.28 (open squares).
(b) open diamonds: data of Chavanne et al. (2001) for Γ =0.5 and 2.0 � σ � 4.5; solid
symbols and open circles: this work for Γ =0.98, 0.67, and 0.43.

their experimental uncertainty, collapse onto a unique curve when divided by σ
αeff .

The observed σ -dependence is somewhat stronger than that of the GL model with
its present parameter values.

2.4. Comparison with other results

Measurements of N(R) for Γ = 0.50 over the range 108 � R � 5 × 1010 and a wide
range of σ were made at cryogenic temperatures using gaseous helium by Roche
et al. (2004). A direct, highly quantitative comparison with our results is possible only
for the data points with σ -values fairly close to ours where the σ -dependence of N
can reasonably be expected to be given by (2.2) with αeff � −0.044. In figure 4(a)
we show results of Roche et al. (2004) for N∞σ 0.044/R1/3 as a function of R. These
data were corrected by the authors for the sidewall conductance, using a procedure
described by them. Because of the small conductivity of helium gas one expects
end-plate corrections to be negligible in this case. We also show our results for
comparison. The data of Roche et al. (2004) fall into three well-defined groups, with
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Figure 5. Compensated Nusselt numbers N∞/R0.309 as a function of R. Open circles:
Niemela & Sreenivasan (2003), Γ =1, 0.7 < σ < 0.9. Open triangles: Niemela et al.
(2000), Γ =1/2, σ � 0.7. Open diamonds: Chavanne et al. (2001), Γ = 1/2, 0.7 < σ < 2.0.
Solid circles and stars: present work, 0.43 � Γ � 0.98, σ = 4.4. Solid squares: present
work, N∞, Γ = 0.28, σ = 4.4. Dash-dotted line: power-law fit to our data with Γ � 0.43
(γeff = 0.3207). Dotted line: power-law fit to our data for Γ = 0.28 (γeff = 0.3193). Solid (dashed)
line: GL model for σ = 4.4 (0.8).

a nearly uniform vertical spacing between them of close to 4%. There is excellent
agreement/consistency of the uppermost branch with our data for Γ =0.98, 0.67, and
0.43. This is consistent with the absence of any significant aspect-ratio dependence
in our data. The existence of the lower two branches is more difficult to reconcile
with our results. Roche et al. (2004) suggest that they encountered more than one
distinct state of their LSF. In our work we never found multi-stability for any Γ , and
the data for Γ =0.67 and 0.43 (which according to the calculations of Verzicco &
Camussi (2003) should correspond to different flow structures) agree with each other
and are consistent with the upper branch of Roche et al., at least in the range where
γeff has not yet saturated at γeff = 1/3. Our data for Γ = 0.28 are lower than those for
our larger Γ , suggesting a difference in the LSF and indicating that the transition
from a single cell to a more complicated structure occurs at Γ < 0.43 in our system.
However, our results for Γ = 0.28 are only about 2% or 3% lower than the larger-Γ
data and not as low as the results from the middle or lower branch of Roche et al.

In figure 4(b) we compare our results with those of Chavanne et al. (2001) from
cryogenic experiments for 2.0 � σ � 4.5 and Γ = 0.50. The end-plate corrections are
expected to be negligible. Because of the low conductivity of the fluid, the sidewall
contribution to the conductance of the cell is significant, but apparently no correction
was made. The authors interpret their data to imply γeff � 0.38, and attribute the
large value to a breakdown of the boundary layers adjacent to the top and bottom
plates. In that case one expects that a new regime first proposed by Kraichnan
(1962) with an asymptotic exponent γ =1/2 (and logarithmic corrections) should be
entered. Our data do not reveal such a large exponent, and in the overlapping range
1011 � R � 2 × 1012 remain consistent with γeff =1/3.

Finally, in figure 5 we compare our results for Γ = 0.98, 0.67, and 0.43 (solid circles
where γeff � 0.32 and stars where γeff � 0.333) and Γ = 0.28 (solid squares) on a less
sensitive vertical scale with several measurements at cryogenic temperatures. A more
comprehensive comparison was presented by Niemela & Sreenivasan (2003, referred
to as NS) (we choose the same representation in terms of N∞/R0.309 that was used
by them in their figure 5). There are systematic differences between the data sets that
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are, according to NS, larger than possible systematic errors in the experiments. Our
data show very little change of γeff with R, and the solid circles in figure 5 yield
γeff � 0.321. The data by NS (connected open circles) show a dependence on R that
differs from ours, with γeff varying from about 0.28 to about 0.35 as R changes from
109 to 1012. The data of Niemela et al. (2000) do not show such a strong variation of
γeff and can be described well by a single γeff = 0.30 over the R-range of the figure.
The data of Chavanne et al. (2001) (open diamonds) are on average slightly larger
than ours, but over the range of R shown in the figure they have an R-dependence
that is consistent with that of ours (see, however, figure 4b).

We have been unable to rationalize the large variations of the effective exponents
of N from one experiment to another, and in the case of the data of NS within
a single experiment with R. NS suggested that differences in the LSF structure are
responsible, and state that “such differences seem to arise from delicate interplay
among detailed geometry as well as Prandtl and Rayleigh numbers”. Looking at our
data, the absence of any significant Γ -dependence is apparent from the clustering of
the data for Γ � 0.43 (solid circles) near the straight dash-dotted line corresponding
to γeff = 0.3207; i.e. Γ per se does not play a major role. Even for Γ = 0.28, where
the data are displaced vertically in the figure, presumably because of a change in the
LSF, they have nearly the same effective exponent γeff = 0.3193 (dotted line). Thus
it appears from our data that differences in the LSF do not have a large effect on
the R-dependence of N∞(R). We wish we had a more satisfying explanation of the
different results obtained by the various experiments.

This work was supported by the US Department of Energy through Grant DE-
FG03-87ER13738.
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